论文标题

使用放射线学作为胸部疾病分类和胸部X射线内定位的先验知识

Using Radiomics as Prior Knowledge for Thorax Disease Classification and Localization in Chest X-rays

论文作者

Han, Yan, Chen, Chongyan, Tang, Liyan, Lin, Mingquan, Jaiswal, Ajay, Wang, Song, Tewfik, Ahmed, Shih, George, Ding, Ying, Peng, Yifan

论文摘要

胸部X射线由于其无创性而成为最常见的医学诊断之一。胸部X射线图像的数量激增了,但是读取胸部X射线仍然是由放射科医生手动执行的,这会造成巨大的倦怠和延误。传统上,放射素学是可以从医学图像中提取大量定量特征的放射学子场,它证明了其在深度学习时代之前促进医学成像诊断的潜力。在本文中,我们开发了一个端到端框架Chexradinet,可以利用放射线学特征来改善异常分类性能。具体而言,Chexradinet首先采用轻巧但有效的三胞胎注意机制来对胸部X射线进行分类并突出异常区域。然后,它使用生成的类激活图来提取放射线特征,从而进一步指导我们的模型学习更多可靠的图像特征。经过多次迭代并借助放射线特征,我们的框架可以收敛到更准确的图像区域。我们使用三个公共数据集评估了Chexradinet框架:NIH CHESTX-RAY,CHEXPERT和MIMIC-CXR。我们发现Chexradinet的表现优于疾病检测(AUC中0.843)和定位(t(iou)= 0.1)的最先进。我们将在https://github.com/bionlplab/lung_disease_detection_amia2021上公开提供该代码,希望这种方法可以促进具有对放射学世界的高级了解的自动系统的开发。

Chest X-ray becomes one of the most common medical diagnoses due to its noninvasiveness. The number of chest X-ray images has skyrocketed, but reading chest X-rays still have been manually performed by radiologists, which creates huge burnouts and delays. Traditionally, radiomics, as a subfield of radiology that can extract a large number of quantitative features from medical images, demonstrates its potential to facilitate medical imaging diagnosis before the deep learning era. In this paper, we develop an end-to-end framework, ChexRadiNet, that can utilize the radiomics features to improve the abnormality classification performance. Specifically, ChexRadiNet first applies a light-weight but efficient triplet-attention mechanism to classify the chest X-rays and highlight the abnormal regions. Then it uses the generated class activation map to extract radiomic features, which further guides our model to learn more robust image features. After a number of iterations and with the help of radiomic features, our framework can converge to more accurate image regions. We evaluate the ChexRadiNet framework using three public datasets: NIH ChestX-ray, CheXpert, and MIMIC-CXR. We find that ChexRadiNet outperforms the state-of-the-art on both disease detection (0.843 in AUC) and localization (0.679 in T(IoU) = 0.1). We will make the code publicly available at https://github.com/bionlplab/lung_disease_detection_amia2021, with the hope that this method can facilitate the development of automatic systems with a higher-level understanding of the radiological world.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源