论文标题
情感语义保存和特征对象的自行车,以适应视觉情感
Emotional Semantics-Preserved and Feature-Aligned CycleGAN for Visual Emotion Adaptation
论文作者
论文摘要
多亏了大型标记的培训数据,深层神经网络(DNN)在许多视觉和多媒体任务中都取得了显着的成功。但是,由于域的存在,训练有素的DNN的学习知识不能很好地推广到具有很少标签的新域或数据集。无监督的域适应性(UDA)研究了在一个标记的源域训练的模型转移到另一个未标记的目标域的问题。在本文中,我们专注于视觉情绪分析的UDA,以进行情绪分布学习和主导的情绪分类。具体而言,我们设计了一种新型的端到端周期一致的对抗模型,称为Cyclemotiongan ++。首先,我们通过通过多尺度的结构化周期一致性损失来改善Cyclegan来生成一个适应的域,以使像素级别的源和目标域在像素级别上对齐。在图像翻译过程中,我们提出了动态的情感语义一致性丧失,以保留源图像的情感标签。其次,我们在适应的域上训练可转移的任务分类器,并在适应性域和目标域之间进行特征级别的对齐。我们在Flickr-LDL和Twitter-LDL数据集上进行了广泛的UDA实验,以进行分发学习以及Artphoto&FI数据集用于情绪分类。结果表明,与最新的UDA方法相比,提出的Cyclemotiongan ++产生的显着改善。
Thanks to large-scale labeled training data, deep neural networks (DNNs) have obtained remarkable success in many vision and multimedia tasks. However, because of the presence of domain shift, the learned knowledge of the well-trained DNNs cannot be well generalized to new domains or datasets that have few labels. Unsupervised domain adaptation (UDA) studies the problem of transferring models trained on one labeled source domain to another unlabeled target domain. In this paper, we focus on UDA in visual emotion analysis for both emotion distribution learning and dominant emotion classification. Specifically, we design a novel end-to-end cycle-consistent adversarial model, termed CycleEmotionGAN++. First, we generate an adapted domain to align the source and target domains on the pixel-level by improving CycleGAN with a multi-scale structured cycle-consistency loss. During the image translation, we propose a dynamic emotional semantic consistency loss to preserve the emotion labels of the source images. Second, we train a transferable task classifier on the adapted domain with feature-level alignment between the adapted and target domains. We conduct extensive UDA experiments on the Flickr-LDL & Twitter-LDL datasets for distribution learning and ArtPhoto & FI datasets for emotion classification. The results demonstrate the significant improvements yielded by the proposed CycleEmotionGAN++ as compared to state-of-the-art UDA approaches.