论文标题

深胸:使用深度学习将低表面亮度星系与伪影分开

DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts using Deep Learning

论文作者

Tanoglidis, Dimitrios, Ćiprijanović, Aleksandra, Drlica-Wagner, Alex

论文摘要

在星系调查中搜索低露天 - 闪亮星系(LSBG)受到大量伪像的存在(例如,物体在恒星和星系,银河系的弥漫光中混合在一起,银河系,银河珊瑚,恒星形成的区域,在螺旋星系的武器等方面都被拒绝。在未来的调查中,预计将收集数百pb的数据并检测数十亿个对象,这种方法是不可行的。我们研究了卷积神经网络(CNN)在调查图像中将LSBG与工件分开的问题。我们利用了这一事实,即我们首次获得了大量的标签LSBG和黑暗能源调查的文物,我们用来训练,验证和测试CNN模型。我们称之为DeepShadows的模型可实现$ 92.0 \%$的测试准确性,这是相对于基于功能的机器学习模型的重大改进。我们还研究了使用转移学习来适应该模型以对对象进行对象进行更深层次的suprime-cam调查进行分类的能力,并且我们表明,在新调查中的一个很小的样本中重新训练该模型后,它的准确度可以达到87.6美元\%$。这些结果表明,CNN在研究低表面亮度宇宙的过程中提供了非常有前途的途径。

Searches for low-surface-brightness galaxies (LSBGs) in galaxy surveys are plagued by the presence of a large number of artifacts (e.g., objects blended in the diffuse light from stars and galaxies, Galactic cirrus, star-forming regions in the arms of spiral galaxies, etc.) that have to be rejected through time consuming visual inspection. In future surveys, which are expected to collect hundreds of petabytes of data and detect billions of objects, such an approach will not be feasible. We investigate the use of convolutional neural networks (CNNs) for the problem of separating LSBGs from artifacts in survey images. We take advantage of the fact that, for the first time, we have available a large number of labeled LSBGs and artifacts from the Dark Energy Survey, that we use to train, validate, and test a CNN model. That model, which we call DeepShadows, achieves a test accuracy of $92.0 \%$, a significant improvement relative to feature-based machine learning models. We also study the ability to use transfer learning to adapt this model to classify objects from the deeper Hyper-Suprime-Cam survey, and we show that after the model is retrained on a very small sample from the new survey, it can reach an accuracy of $87.6\%$. These results demonstrate that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源