论文标题
在AU上合成的2D GraphDiyne样碳纳米网的结构,电子和振动特性(111):对SP-SP2碳纳米结构的工程的影响
Structural, Electronic, and Vibrational Properties of 2D Graphdiyne-Like Carbon Nanonetwork Synthesized on Au(111): Implications for the Engineering of sp-sp2 Carbon Nanostructures
论文作者
论文摘要
GraphDiyne,基于SP SP2杂交的原子薄2D碳纳米结构,是一个具有吸引力的系统,可能显示出出色的机械和光电特性。卤代SP碳基分子前体的表面催化耦合代表了一种有前途的自下而上策略,用于制造具有金属底物上工程结构的扩展2D碳系统。在这里,我们通过表面合成在AU(111)上种植的扩展GraphDiyne样SP-SP2碳纳米网的原子尺度结构以及电子和振动性能。通过扫描隧道显微镜(STM),拉曼光谱法监测沉积后的不同阶段,在其不同阶段形成这种2D纳米网,并与密度功能理论(DFT)计算结合。高分辨率的STM成像和拉曼光谱对键本性的高灵敏度提供了一种独特的策略,可以揭示SP SP2碳纳米结构的原子级特性。我们表明,与自由常见的系统相比,2D碳纳米网与潜在底物状态之间的杂交强烈影响其电子和振动性能,从而大大改变了状态和拉曼光谱的密度。这为在未来应用中具有重要前景的电子特性的调制开辟了道路,作为活性纳米材料,用于催化,光转录和碳基纳米电子学。
Graphdiyne, atomically-thin 2D carbon nanostructure based on sp-sp2 hybridization, is an appealing system potentially showing outstanding mechanical and optoelectronic properties. Surface-catalyzed coupling of halogenated sp-carbon-based molecular precursors represents a promising bottom-up strategy to fabricate extended 2D carbon systems with engineered structure on metallic substrates. Here, we investigate the atomic-scale structure and electronic and vibrational properties of an extended graphdiyne-like sp-sp2 carbon nanonetwork grown on Au(111) by means of on-surface synthesis. The formation of such 2D nanonetwork at its different stages as a function of the annealing temperature after the deposition is monitored by scanning tunneling microscopy (STM), Raman spectroscopy and combined with density functional theory (DFT) calculations. High-resolution STM imaging and the high sensitivity of Raman spectroscopy to the bond nature provide a unique strategy to unravel the atomic-scale properties of sp-sp2 carbon nanostructures. We show that hybridization between the 2D carbon nanonetwork and the underlying substrate states strongly affects its electronic and vibrational properties, modifying substantially the density of states and the Raman spectrum compared to the free standing system. This opens the way to the modulation of the electronic properties with significant prospects in future applications as active nanomaterials for catalysis, photoconversion and carbon-based nanoelectronics.