论文标题

陷阱:一种时间系统模型,用于改善在小角度分离下直接检测系外行星的直接检测

TRAP: A temporal systematics model for improved direct detection of exoplanets at small angular separations

论文作者

Samland, M., Bouwman, J., Hogg, D. W., Brandner, W., Henning, T., Janson, M.

论文摘要

用于外行星检测的高对比度成像调查表明,在大分离处的巨型行星很少见。重要的是要在较小的分离处推动检测,这是包含大多数行星的参数空间的一部分。由于除了较高的恒星污染的内在难度外,还需要较大的野外旋转来取代检测器上的较大的野外旋转,因此在较小的分离时,传统方法的传统方法在较小的分离下的性能下降。我们开发了一种提取系外星网信号的方法,该信号在小角度分离下提高了性能。假设系统的基本原因是在多个像素上共享的,可以使用不同位置的参考像素来创建每个像素的系统时间行为的数据驱动模型。对于高对比度成像中的斑点模式主要是正确的。在我们的因果回归模型中,我们同时拟合了行星信号的模型,而不是检测器像素和非本地参考光曲面,描述了斑点模式的共享时间趋势的基础,以找到描述信号的最佳拟合时间模型。通过在空间非本地的时间系统系统模型(称为陷阱)的实施,我们表明,与基于时间流离时间的图像之间的空间相关的模型相比,在紧密分离($ <3λ/d $)相比,在近距离分离($ <3λ/d $)的对比中,有可能获得6倍。我们表明,更好的时间抽样导致对比度明显更好。在$β$ PIC数据的简短集成时间下,与空间系统模型相比,我们将行星的SNR增加了4倍。最后,我们表明,时间模型可以用于仅经过深色和平坦校正的非对齐数据,而无需进行进一步的预处理。

High-contrast imaging surveys for exoplanet detection have shown giant planets at large separations to be rare. It is important to push towards detections at smaller separations, the part of the parameter space containing most planets. The performance of traditional methods for post-processing of pupil-stabilized observations decreases at smaller separations, due to the larger field-rotation required to displace a source on the detector in addition to the intrinsic difficulty of higher stellar contamination. We developed a method of extracting exoplanet signals that improves performance at small angular separations. A data-driven model of the temporal behavior of the systematics for each pixel can be created using reference pixels at a different position, assuming the underlying causes of the systematics are shared across multiple pixels. This is mostly true for the speckle pattern in high-contrast imaging. In our causal regression model, we simultaneously fit the model of a planet signal "transiting" over detector pixels and non-local reference lightcurves describing a basis of shared temporal trends of the speckle pattern to find the best fitting temporal model describing the signal. With our implementation of a spatially non-local, temporal systematics model, called TRAP, we show that it is possible to gain up to a factor of 6 in contrast at close separations ($<3λ/D$) compared to a model based on spatial correlations between images displaced in time. We show that better temporal sampling resulting in significantly better contrasts. At short integration times for $β$ Pic data, we increase the SNR of the planet by a factor of 4 compared to the spatial systematics model. Finally, we show that the temporal model can be used on unaligned data which has only been dark and flat corrected, without the need for further pre-processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源