论文标题

可整合超级自旋链的重叠和费米子二元性

Overlaps and Fermionic Dualities for Integrable Super Spin Chains

论文作者

Kristjansen, Charlotte, Müller, Dennis, Zarembo, Konstantin

论文摘要

PSU(2,2 | 4)ADS/CFT对应关系基础的可积分超自旋链具有可集成的边界状态,该边界状态描述了K D3-BRANES溶解在探针D5-Brane中的设置。伯特特征态和这些边界状态之间的重叠编码保形操作员的单点函数,并用高丁矩阵的超确定性表示,这依次取决于对称代数的Dynkin图。超级谎言代数的不同可能的dynkin图是通过费米子二元性相关的,我们确定在这些二元性下的重叠公式如何转换。作为应用程序,我们展示了如何在不同Dynkin图获得的K = 1获得的重叠公式之间持续移动。

The psu(2,2|4) integrable super spin chain underlying the AdS/CFT correspondence has integrable boundary states which describe set-ups where k D3-branes get dissolved in a probe D5-brane. Overlaps between Bethe eigenstates and these boundary states encode the one-point functions of conformal operators and are expressed in terms of the superdeterminant of the Gaudin matrix that in turn depends on the Dynkin diagram of the symmetry algebra. The different possible Dynkin diagrams of super Lie algebras are related via fermionic dualities and we determine how overlap formulae transform under these dualities. As an application we show how to consistently move between overlap formulae obtained for k=1 from different Dynkin diagrams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源