论文标题
P-Approximate Schauder框架的扩张定理可分开的Banach空间
Dilation theorem for p-approximate Schauder frames for separable Banach spaces
论文作者
论文摘要
希尔伯特空间中著名的Naimark-Han-Larson扩张定理指出,可分离的Hilbert Space的每个帧$ \ Mathcal {H} $都是Riesz基础的图像,这些图像是在正交的投影中,从可分离的Hilbert Space $ \ Mathcal $ \ Mathcal {h} _1 $ $ \ nath $ \ nathcal is c $ \ iSALCALTY IS $ \} $ {在本文中,我们得出了可分离的Banach空间的P-Approximate Schauder框架的扩张结果。我们的结果包含Naimark-Han-Larson扩张定理作为特定情况。
Famous Naimark-Han-Larson dilation theorem for frames in Hilbert spaces states that every frame for a separable Hilbert space $\mathcal{H}$ is image of a Riesz basis under an orthogonal projection from a separable Hilbert space $\mathcal{H}_1$ which contains $\mathcal{H}$ isometrically. In this paper, we derive dilation result for p-approximate Schauder frames for separable Banach spaces. Our result contains Naimark-Han-Larson dilation theorem as a particular case.