论文标题

随机排列中预期的不同连续模式的预期数

The Expected Number of Distinct Consecutive Patterns in a Random Permutation

论文作者

Allen, Austin, Fonseca, Dylan Cruz, Dobbs, Veronica, Downs, Egypt, Fokuoh, Evelyn, Godbole, Anant, Costa, Sebastián Papanikolaou, Soto, Christopher, Yoshikawa, Lino

论文摘要

令$π_n$为$ [n] $上的均匀选择的随机排列。利用分析两个重叠的连续$ k $ - permutations是订单同构的概率,我们表明,$π_n$中的不同连续模式的预期数为$ \ frac {n^2} {2} {2} {2} {1-o(1-o(1-o(1))$。这表明了一个事实,即随机排列将连续的模式接近完美。

Let $π_n$ be a uniformly chosen random permutation on $[n]$. Using an analysis of the probability that two overlapping consecutive $k$-permutations are order isomorphic, we show that the expected number of distinct consecutive patterns in $π_n$ is $\frac{n^2}{2}(1-o(1))$. This exhibits the fact that random permutations pack consecutive patterns near-perfectly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源