论文标题
算法因果集和Wolfram模型
Algorithmic Causal Sets and the Wolfram Model
论文作者
论文摘要
研究了两种不同的方法之间的形式关系,将时空描述描述为一种本质上离散的数学结构,即因果集理论和Wolfram模型,并研究了Wolfram模型的超图重写方法可以有效地解释为可为Causal Set causal set Evolution提供algorthemic Dynamics。我们展示了如何使用HyperGraph重写系统的因果关系不变性来推断诱导的因果部分秩序的共形不变性,该秩序与Bombelli,Henson和Sorkin的量度理论论证相兼容。然后,我们说明在WOLFRAM模型背景下开发的许多局部维估计算法可以作为因果集合中的中点缩放估计器的概括而重构,并且与广义的Myrheim-Meyer估计器兼容,并与多个标准的估算方法相比,与广义的Myrheim-Meyer估计器相吻合,并探索了如何相比,以探索多个标准的估计估计,并将其与下属的超量估计进行比较。因果集理论的估计器功能。我们最终展示了如何将贝纳卡萨省对因果集的作用恢复,作为在沃尔夫拉姆模型系统上的离散爱因斯坦 - 希尔伯特(Einstein-Hilbert)的特殊情况(在wolfram模型系统中采取的行动(在超差异中,在高刻度中被Poisson分布假设代替了因果集合中的Poisson分布假设),以及在因果关系集合中的特殊循环和量子恢复的特殊恢复的特殊情况,以及如何恢复的特殊情况。离散度量。
The formal relationship between two differing approaches to the description of spacetime as an intrinsically discrete mathematical structure, namely causal set theory and the Wolfram model, is studied, and it is demonstrated that the hypergraph rewriting approach of the Wolfram model can effectively be interpreted as providing an underlying algorithmic dynamics for causal set evolution. We show how causal invariance of the hypergraph rewriting system can be used to infer conformal invariance of the induced causal partial order, in a manner that is provably compatible with the measure-theoretic arguments of Bombelli, Henson and Sorkin. We then illustrate how many of the local dimension estimation algorithms developed in the context of the Wolfram model may be reformulated as generalizations of the midpoint scaling estimator on causal sets, and are compatible with the generalized Myrheim-Meyer estimators, as well as exploring how the presence of the underlying hypergraph structure yields a significantly more robust technique for estimating spacelike distances when compared against several standard distance and predistance estimator functions in causal set theory. We finally demonstrate how the Benincasa-Dowker action on causal sets can be recovered as a special case of the discrete Einstein-Hilbert action over Wolfram model systems (with ergodicity assumptions in the hypergraph replaced by Poisson distribution assumptions in the causal set), and also how both classical and quantum sequential growth dynamics can be recovered as special cases of Wolfram model multiway evolution with an appropriate choice of discrete measure.