论文标题

离散klein-gordon方程的急剧衰减估计值

Sharp time decay estimates for the discrete Klein-Gordon equation

论文作者

Cuenin, Jean-Claude, Ikromov, Isroil A.

论文摘要

我们建立了在立方晶格上的klein-gordon方程式的急剧衰减估计,$ d = 2,3,4 $。 $ \ ell^1 \ to \ ell^{\ infty} $分散衰减率为$ | t |^{ - 3/4} $ for $ d = 2 $,$ d = 2 $,$ | t |^{ - 7/6} $ for $ d = 3 $ d = 3 $和$ | t |这些衰减率比Kevrekidis和Stefanov(2005)的猜想要快。证明依赖于振荡性积分估计,并通过对相关相函数的奇异性进行详细分析。我们还证明了Strichartz的新估计,并讨论了非线性PDE和光谱理论的应用。

We establish sharp time decay estimates for the the Klein-Gordon equation on the cubic lattice in dimensions $d=2,3,4$. The $\ell^1\to\ell^{\infty}$ dispersive decay rate is $|t|^{-3/4}$ for $d=2$, $|t|^{-7/6}$ for $d=3$ and $|t|^{-3/2}\log|t|$ for $d=4$. These decay rates are faster than conjectured by Kevrekidis and Stefanov (2005). The proof relies on oscillatory integral estimates and proceeds by a detailed analysis of the the singularities of the associated phase function. We also prove new Strichartz estimates and discuss applications to nonlinear PDEs and spectral theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源