论文标题
重新访问像素的面对抗疾病的监督
Revisiting Pixel-Wise Supervision for Face Anti-Spoofing
论文作者
论文摘要
面部抗散热器(FAS)在保护面部识别系统免于演示攻击(PAS)方面起着至关重要的作用。随着越来越现实的PA随着新颖类型的形式出现,即使在看不见的情况下,也有必要开发出可靠的算法来检测未知的攻击。但是,在描述固有和歧视性的欺骗模式时,受传统二进制损失监督的深度模型(例如,对于真正的pas vs.1')很弱。最近,已经提出了针对FAS任务的Pixel监督,该任务打算提供更细粒度的像素/补丁级提示。在本文中,我们首先对FAS现有的像素监督方法进行了全面的审查和分析。然后,我们提出了一种新颖的金字塔监督,该监督指导深层模型,从多尺度的空间环境中学习本地细节和全球语义。在五个FAS基准数据集上进行了广泛的实验,以表明,如果没有铃铛和哨声,提出的金字塔监督不仅可以提高超出现有像素的监督框架以外的性能,还可以增强模型的可解释性(即更合理地定位PAS的斑点位置)。此外,还进行了精心设计的研究,以探索两种像素的监督(二进制掩码和深度地图Supperions)的不同体系结构配置的功效,从而为未来的体系结构/监督设计提供了鼓舞人心的见解。
Face anti-spoofing (FAS) plays a vital role in securing face recognition systems from the presentation attacks (PAs). As more and more realistic PAs with novel types spring up, it is necessary to develop robust algorithms for detecting unknown attacks even in unseen scenarios. However, deep models supervised by traditional binary loss (e.g., `0' for bonafide vs. `1' for PAs) are weak in describing intrinsic and discriminative spoofing patterns. Recently, pixel-wise supervision has been proposed for the FAS task, intending to provide more fine-grained pixel/patch-level cues. In this paper, we firstly give a comprehensive review and analysis about the existing pixel-wise supervision methods for FAS. Then we propose a novel pyramid supervision, which guides deep models to learn both local details and global semantics from multi-scale spatial context. Extensive experiments are performed on five FAS benchmark datasets to show that, without bells and whistles, the proposed pyramid supervision could not only improve the performance beyond existing pixel-wise supervision frameworks, but also enhance the model's interpretability (i.e., locating the patch-level positions of PAs more reasonably). Furthermore, elaborate studies are conducted for exploring the efficacy of different architecture configurations with two kinds of pixel-wise supervisions (binary mask and depth map supervisions), which provides inspirable insights for future architecture/supervision design.