论文标题

另一个查看Zagier的公式,用于涉及Hoffman元素的多个Zeta值

Another look at Zagier's formula for multiple zeta values involving Hoffman elements

论文作者

Lupu, Cezar

论文摘要

在本文中,我们将基本帐户介绍给Zagier的公式,以涉及涉及Hoffman元素的多个Zeta值。我们的方法使我们能够通过涉及系数$ζ(2n)$的有理Zeta系列在特殊情况下获得直接证明。该公式在证明霍夫曼的猜想中起着重要的作用,该猜想断言,重量$ k $的每个Zeta值都可以表示为$ \ MATHBB {Q} $ - 相同重量的多个Zeta值的线性组合,涉及$ 2 $ $ 2 $和$ 3 $。同样,使用有理Zeta系列的类似的超几何参数,我们为多个特殊的Hurwitz Zeta值生成了新的Zagier型公式。

In this paper, we give an elementary account into Zagier's formula for multiple zeta values involving Hoffman elements. Our approach allows us to obtain direct proof in a special case via rational zeta series involving the coefficient $ζ(2n)$. This formula plays an important role in proving Hoffman's conjecture which asserts that every multiple zeta value of weight $k$ can be expressed as a $\mathbb{Q}$-linear combinations of multiple zeta values of the same weight involving $2$'s and $3$'s. Also, using a similar hypergeometric argument via rational zeta series, we produce a new Zagier-type formula for the multiple special Hurwitz zeta values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源