论文标题
使用显微镜图像转移口腔癌检测
Transfer Learning for Oral Cancer Detection using Microscopic Images
论文作者
论文摘要
如果在早期阶段检测到口腔癌的存活率超过83%,但是目前只有29%的病例早期被检测到。深度学习技术可以检测口腔癌细胞的模式,并有助于早期检测。在这项工作中,我们介绍了使用微观图像进行口腔癌检测的神经网络的第一个结果。我们通过转移学习方法比较了众多最先进的模型,并收集和释放了口腔癌高质量微观图像的增强数据集。我们对不同模型进行了全面的研究,并报告了他们在此类数据上的性能。总体而言,与简单的卷积神经网络基线相比,我们通过转移学习方法获得了10-15%的绝对改进。消融研究表明,对于这项任务,数据增强技术的额外好处。
Oral cancer has more than 83% survival rate if detected in its early stages, however, only 29% of cases are currently detected early. Deep learning techniques can detect patterns of oral cancer cells and can aid in its early detection. In this work, we present the first results of neural networks for oral cancer detection using microscopic images. We compare numerous state-of-the-art models via transfer learning approach and collect and release an augmented dataset of high-quality microscopic images of oral cancer. We present a comprehensive study of different models and report their performance on this type of data. Overall, we obtain a 10-15% absolute improvement with transfer learning methods compared to a simple Convolutional Neural Network baseline. Ablation studies show the added benefit of data augmentation techniques with finetuning for this task.