论文标题
沿量子轨迹的工作和熵产生的联合统计数据
Joint statistics of work and entropy production along quantum trajectories
论文作者
论文摘要
在热力学,熵产生和工作中,当系统被驱动到平衡中时,分别量化了不可逆性和有用能量的消耗。对于量子系统,可以通过在量子跳跃轨迹方面揭示系统的演变来在随机水平上识别这些量。我们在这里得出了一个通用公式,用于计算马尔可夫驱动的量子系统中工作和熵产生的联合统计数据,其瞬时稳态是吉布斯形式的。如果驱动的系统始终保持接近瞬时吉布斯状态,我们表明,相应的两变量累积生成函数意味着只要满足详细的平衡,就意味着关节详细的波动定理。作为推论,我们仅用于熵产生的修改后的波动 - 散落关系(FDR),适用于任意稳态之间的过渡,以及违反详细平衡的系统。该FDR包含由真正的量子波动产生的术语,并扩展了从经典热力学到量子状态的类似关系。
In thermodynamics, entropy production and work quantify irreversibility and the consumption of useful energy, respectively, when a system is driven out of equilibrium. For quantum systems, these quantities can be identified at the stochastic level by unravelling the system's evolution in terms of quantum jump trajectories. We here derive a general formula for computing the joint statistics of work and entropy production in Markovian driven quantum systems, whose instantaneous steady-states are of Gibbs form. If the driven system remains close to the instantaneous Gibbs state at all times, we show that the corresponding two-variable cumulant generating function implies a joint detailed fluctuation theorem so long as detailed balance is satisfied. As a corollary, we derive a modified fluctuation-dissipation relation (FDR) for the entropy production alone, applicable to transitions between arbitrary steady-states, and for systems that violate detailed balance. This FDR contains a term arising from genuinely quantum fluctuations, and extends an analogous relation from classical thermodynamics to the quantum regime.