论文标题
迈向一维超流体中深色孤子气的动力学理论
Towards a kinetic theory of a dark soliton gas in one-dimensional superfluids
论文作者
论文摘要
孤子流体动力学是描述低维系统中强湍流的吸引人的工具。准二维型旋转液中的强湍流,例如玻色的凝结物,涉及深色孤子的动力学,因此需要描述深色 - 岩石的统计集合,即孤子气体,即必要。在这项工作中,我们提出了深色 - 丝岩气体的相位空间(动力学)描述,引入了与血浆物理学中Vlasov方程正式相似的动力学方程。我们表明,提出的动力学理论可以捕获孤子气的动力学特征,并表明它具有声音模式,这一事实是,我们借助直接的数值模拟来证实。我们的发现激发了对低维超流体中不平衡和湍流状态的显微镜结构的研究。
Soliton hydrodynamics is an appealing tool to describe strong turbulence in low-dimensional systems. Strong turbulence in quasi-one dimensional spuerfluids, such as Bose-Einstein condensates, involves the dynamics of dark solitons and, therefore, the description of a statistical ensemble of dark-solitons, i.e. soliton gases, is necessary. In this work, we propose a phase-space (kinetic) description of dark-soliton gases, introducing a kinetic equation that is formally similar to the Vlasov equation in plasma physics. We show that the proposed kinetic theory can capture the dynamical features of soliton gases and show that it sustains an acoustic mode, a fact that we corroborate with the help of direct numerical simulations. Our findings motivate the investigation of the microscopic structure of out-of-equilibrium and turbulent regimes in low-dimensional superfluids.