论文标题

顺序总和,顺时针hackenbush和Domino剃须

Ordinal Sums, Clockwise Hackenbush, and Domino Shave

论文作者

Carvalho, Alda, Huggan, Melissa A., Nowakowski, Richard J., Santos, Carlos Pereira dos

论文摘要

我们提出了两个规则集,分别是多米诺骨牌和顺时针hackenbush。第一个是自然的,作为特殊情况,包括Stirling Shave和Hetyei的Bernoulli游戏。顺时针Hackenbush似乎是人为的,但相当于Domino剃须。从游戏的绘画形式以及对Hackenbush的知识,分解为列出的总和是直接的。顺时针蓝红色hackenbush的值是数字,我们为数字的序数总和提供了一个明确的公式,而基本的文字形式为$ \ {x \,| \,\} $或$ \ {\ {\ {\ {\ \,| \,x \} $,而$ x $是一个数字。该公式将Van Roode的签名二进制编号方法推广到蓝红色Hackenbush。

We present two rulesets, Domino Shave and Clockwise Hackenbush. The first is somehow natural and, as special cases, includes Stirling Shave and Hetyei's Bernoulli game. Clockwise Hackenbush seems artificial yet it is equivalent to Domino Shave. From the pictorial form of the game, and a knowledge of Hackenbush, the decomposition into ordinal sums is immediate. The values of Clockwise Blue-Red Hackenbush are numbers and we provide an explicit formula for the ordinal sum of numbers where the literal form of the base is $\{x\,|\,\}$ or $\{\,|\,x\}$, and $x$ is a number. That formula generalizes van Roode's signed binary number method for Blue-Red Hackenbush.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源