论文标题

通过因果镜头重新思考累犯

Rethinking recidivism through a causal lens

论文作者

Shirvaikar, Vik, Lakshminarayan, Choudur

论文摘要

对犯罪累犯的预测建模,或者人们将来是否会重新犯罪,具有悠久而有争议的历史。现代因果推理方法使我们能够超越预测,并针对观测数据集中特定干预对结果的“治疗效果”。在本文中,我们专门研究了使用北卡罗来纳州著名的数据集对监禁(监狱时间)对累犯的影响。解释和证明了两种流行的因果关系:有向无环的调整(DAG)调整和双机器学习(DML),包括对未观察到的混杂因素的灵敏度分析。我们发现,监禁对累犯有不利影响,即,较长的监狱刑罚使个人更有可能在释放后重新犯罪,尽管该结论不应超出我们的数据范围。我们希望该案例研究能够为未来的因果推论提供刑事司法分析的应用。

Predictive modeling of criminal recidivism, or whether people will re-offend in the future, has a long and contentious history. Modern causal inference methods allow us to move beyond prediction and target the "treatment effect" of a specific intervention on an outcome in an observational dataset. In this paper, we look specifically at the effect of incarceration (prison time) on recidivism, using a well-known dataset from North Carolina. Two popular causal methods for addressing confounding bias are explained and demonstrated: directed acyclic graph (DAG) adjustment and double machine learning (DML), including a sensitivity analysis for unobserved confounders. We find that incarceration has a detrimental effect on recidivism, i.e., longer prison sentences make it more likely that individuals will re-offend after release, although this conclusion should not be generalized beyond the scope of our data. We hope that this case study can inform future applications of causal inference to criminal justice analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源