论文标题

Ultrastrong,超流线和超透明聚乙烯细胞纳米膜

Ultrastrong, Ultraflexible, and Ultratransparent Polyethylene Cellular Nanofilms

论文作者

Gao, Ping, Gu, Qiao, Li, Jin, Li, Runlai, Zhang, Qinghua, Weng, Lu-tao, Zhao, Tianshou, Yu, T. X., Shao, Minhua, Amine, Khalil

论文摘要

轻质和机械强大的细胞聚合物纳米膜为许多尖端技术提供材料解决方案,例如高畅通膜过滤,超薄柔性储能和皮肤配置设备。然而,制造手动操纵细胞聚合物纳米膜以自动结构材料的形式构成手动操纵细胞聚合物纳米膜仍然具有挑战性。本文中,我们使用了顺序平面扩展方法来将低输入的超高分子量聚乙烯(UHMWPE)凝胶膜分散在孔源聚乙烯寡聚物中的细胞纳米膜中,这些纳米膜上由分子反向分子细胞的拉伸含量三角细胞组成。 The microstructure afforded the cellular nanofilm, which had a thickness down to 20 nm, with a unique combination of ultratransparency (>98.5%), ultrahigh in-plane tensile strength (1071 MPa.cm^3.g^(-1)), and ultrahigh flexibility: a 43 nm thick film can deflect reversibly up to 8.0 mm in depth (185,000 times) under a球形压痕负载。作为应用程序,我们将纳米膜制造成独立的超透明呼吸盖覆盖物。预计新的聚乙烯细胞纳米膜将代表一类新的平台膜,用于推进基本和技术发展。

Light weight and mechanically robust cellular polymer nanofilms provide materials solutions to many cutting-edge technologies, such as high-flux membrane filtration, ultrathin flexible energy storage, and skin-conformable devices. However, it remains challenging to fabricate hand manipulatable cellular polymer nanofilms for use as self-standing structural materials. Herein, we used a sequential planar extension approach to transform low-entanglement ultrahigh molecular weight polyethylene (UHMWPE) gel films dispersed in porogenic polyethylene oligomers into cellular nanofilms consisting of stretch-dominated triangular cells of molecularly anisotropic cell edges. The microstructure afforded the cellular nanofilm, which had a thickness down to 20 nm, with a unique combination of ultratransparency (>98.5%), ultrahigh in-plane tensile strength (1071 MPa.cm^3.g^(-1)), and ultrahigh flexibility: a 43 nm thick film can deflect reversibly up to 8.0 mm in depth (185,000 times) under a spherical indentation load. As an application, we fabricated the nanofilm into a freestanding ultratransparent respiratory face covering. The new polyethylene cellular nanofilms are expected to represent a new class of platform membranes for advancing fundamental and technological development.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源