论文标题
正中间曲率指标的正空间
Spaces of positive intermediate curvature metrics
论文作者
论文摘要
在本文中,我们研究了中间曲率上具有下限的Riemannian指标的空间。我们表明,在给定的高维自旋manifold上阳性P曲面和K阳性RICCI曲率的指标空间具有许多非平凡同型基团,规定歧管承认了这样的度量。
In this paper we study spaces of Riemannian metrics with lower bounds on intermediate curvatures. We show that the spaces of metrics of positive p-curvature and k-positive Ricci curvature on a given high-dimensional Spin-manifold have many non-trivial homotopy groups provided that the manifold admits such a metric.