论文标题
关于半导体方程的反问题
On inverse problems for semiconductor equations
论文作者
论文摘要
本文致力于研究与固定漂移扩散方程建模半导体设备相关的反问题。在这种情况下,我们分析了与不同类型的测量值相对应的几个识别问题,其中要重建的参数是PDE模型中的不均匀性(掺杂配置文件)。对于特定类型的测量(与电流图相关),我们考虑了漂移扩散方程的特殊情况,其中逆问题减少了经典的反电导率问题。为这些特殊情况之一(线性化的单极病例)提出了数值实验。
This paper is devoted to the investigation of inverse problems related to stationary drift-diffusion equations modeling semiconductor devices. In this context we analyze several identification problems corresponding to different types of measurements, where the parameter to be reconstructed is an inhomogeneity in the PDE model (doping profile). For a particular type of measurement (related to the voltage-current map) we consider special cases of drift-diffusion equations, where the inverse problems reduces to a classical inverse conductivity problem. A numerical experiment is presented for one of these special situations (linearized unipolar case).