论文标题
振荡器与双曲混沌相的同步
Synchronization of oscillators with hyperbolic chaotic phases
论文作者
论文摘要
研究了两种模型的双曲混沌相的振荡器人群的同步。一个基于相位振荡器的库拉莫托动力学和应用于这些阶段的伯努利图。该系统具有Ott-Antonsen不变的歧管,允许派生用于复杂顺序参数的演变的MAP。除了关键的耦合强度之外,该模型表明了双重同步序列。另一个模型是基于与Smale-Williams类型的双曲混沌奇怪吸引者的耦合自主振荡器。在这里,观察到在小耦合强度下的异步状态,并且在大耦合处完全同步。中间度制度的特征是全球顺序参数动力学的复杂程度不同。
Synchronization in a population of oscillators with hyperbolic chaotic phases is studied for two models. One is based on the Kuramoto dynamics of the phase oscillators and on the Bernoulli map applied to these phases. This system possesses an Ott-Antonsen invariant manifold, allowing for a derivation of a map for the evolution of the complex order parameter. Beyond a critical coupling strength, this model demonstrates bistability synchrony-disorder. Another model is based on the coupled autonomous oscillators with hyperbolic chaotic strange attractors of Smale-Williams type. Here a disordered asynchronous state at small coupling strengths, and a completely synchronous state at large couplings are observed. Intermediate regimes are characterized by different levels of complexity of the global order parameter dynamics.