论文标题

在安全量子计算的圆形复杂性上

On The Round Complexity of Secure Quantum Computation

论文作者

Bartusek, James, Coladangelo, Andrea, Khurana, Dakshita, Ma, Fermi

论文摘要

我们在两党(2PQC)和多方(MPQC)设置中构建了第一个用于安全量子计算的常数协议,并具有针对恶意对手的安全性。我们的协议位于常见的随机字符串(CRS)模型中。 - 假设两年透明的转移(OT),我们获得(i)三膜2PQC和(ii)五轮MPQC,只有三轮在线(输入依赖性)通信;从错误(QLWE)的量子学习中可以知道这样的OT。 - 假设QLWE的次指定硬度,我们获得了(i)三轮2PQC,带有两个在线回合和(ii)四轮MPQC,并带有两个在线回合。 - 当只有一个(在两个)接收输出时,我们获得了两人ot的最小交互(两个消息);从经典上讲,这种协议被称为非相互作用的安全计算(NISC),我们的结果构成了第一个恶意安全量子NISC。另外,假设对NP(MDV-Nizks)的可重复使用的恶意指定的Nizk论点,我们给出了QMA的第一个MDV-NIZK,仅需要量子证人的一份副本。 最后,我们对两轮安全量子计算进行初步研究,每个方必须获得输出。在负面方面,我们确定了一类广泛的模拟策略,这些策略对于经典的两轮安全计算足以在量子设置中起作用。接下来,作为概念验证,我们表明两轮安全量子计算相对于量子甲骨文存在。

We construct the first constant-round protocols for secure quantum computation in the two-party (2PQC) and multi-party (MPQC) settings with security against malicious adversaries. Our protocols are in the common random string (CRS) model. - Assuming two-message oblivious transfer (OT), we obtain (i) three-message 2PQC, and (ii) five-round MPQC with only three rounds of online (input-dependent) communication; such OT is known from quantum-hard Learning with Errors (QLWE). - Assuming sub-exponential hardness of QLWE, we obtain (i) three-round 2PQC with two online rounds and (ii) four-round MPQC with two online rounds. - When only one (out of two) parties receives output, we achieve minimal interaction (two messages) from two-message OT; classically, such protocols are known as non-interactive secure computation (NISC), and our result constitutes the first maliciously-secure quantum NISC. Additionally assuming reusable malicious designated-verifier NIZK arguments for NP (MDV-NIZKs), we give the first MDV-NIZK for QMA that only requires one copy of the quantum witness. Finally, we perform a preliminary investigation into two-round secure quantum computation where each party must obtain output. On the negative side, we identify a broad class of simulation strategies that suffice for classical two-round secure computation that are unlikely to work in the quantum setting. Next, as a proof-of-concept, we show that two-round secure quantum computation exists with respect to a quantum oracle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源