论文标题

可变形颗粒流体动力学的泊松式支架公式

Poisson-bracket formulation of the dynamics of fluids of deformable particles

论文作者

Hernandez, Arthur, Marchetti, M. Cristina

论文摘要

使用Poisson括号方法,我们得出了在二维中可变形颗粒流体的连续方程。粒子形状是根据两个连续场量化的:一个各向异性密度场,该电场捕获了从常规形状和形状张量密度场的单个颗粒变形,该图量量化了粒子伸长和伸长形状的nematoric对准。我们明确考虑了由顶点模型能量所描述的密集生物组织的例子,其中已提出细胞形状作为液体固定过渡的结构阶参数。这里提出的生物组织的流体动力学模型捕获了细胞形状与流动的耦合,并为建模致密组织的流变学提供了起点。

Using the Poisson bracket method, we derive continuum equations for a fluid of deformable particles in two dimensions. Particle shape is quantified in terms of two continuum fields: an anisotropy density field that captures the deformations of individual particles from regular shapes and a shape tensor density field that quantifies both particle elongation and nematic alignment of elongated shapes. We explicitly consider the example of a dense biological tissue as described by the Vertex model energy, where cell shape has been proposed as a structural order parameter for a liquid-solid transition. The hydrodynamic model of biological tissue proposed here captures the coupling of cell shape to flow, and provides a starting point for modeling the rheology of dense tissue.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源