论文标题

采矿有影响力及其在Twitter活动中的机器人活动

Mining Influentials and their Bot Activities on Twitter Campaigns

论文作者

Karunasekera, Shanika, Lim, Kwan Hui, Harwood, Aaron

论文摘要

Twitter越来越多地用于政治,广告和营销活动,主要目的是影响用户支持特定原因,个人或团体。我们提出了一种用于采矿和分析Twitter广告系列的新方法,其中包括:(i)收集推文并检测与广告系列有关的主题; (ii)使用科学计量学措施采矿重要的竞选主题; (iii)使用主题标签和局部熵对用户兴趣进行建模; (iv)使用适应的Pagerank分数识别有影响力的用户; (v)各种指标和可视化技术,用于识别类似机器人的活动。尽管该方法可以推广到多种竞选类型,但我们证明了其对2017年德国联邦大选的有效性。

Twitter is increasingly used for political, advertising and marketing campaigns, where the main aim is to influence users to support specific causes, individuals or groups. We propose a novel methodology for mining and analyzing Twitter campaigns, which includes: (i) collecting tweets and detecting topics relating to a campaign; (ii) mining important campaign topics using scientometrics measures; (iii) modelling user interests using hashtags and topical entropy; (iv) identifying influential users using an adapted PageRank score; and (v) various metrics and visualization techniques for identifying bot-like activities. While this methodology is generalizable to multiple campaign types, we demonstrate its effectiveness on the 2017 German federal election.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源