论文标题
与平面和声地图的Schwarz引理的交谈
A converse to the Schwarz lemma for planar harmonic maps
论文作者
论文摘要
获得了$(h^1)^\ ast $和$ h^4 $规范的近期不平等版本的敏锐版本。不平等用于建立尖锐而易于处理的足够条件,用于用于固定原点的单位光盘的谐波自图的线衍生物。
A sharp version of a recent inequality of Kovalev and Yang on the ratio of the $(H^1)^\ast$ and $H^4$ norms for certain polynomials is obtained. The inequality is applied to establish a sharp and tractable sufficient condition for the Wirtinger derivatives at the origin for harmonic self-maps of the unit disc which fix the origin.