论文标题

集团沉浸在没有固定两分图的图中

Clique immersion in graphs without fixed bipartite graph

论文作者

Liu, Hong, Wang, Guanghui, Yang, Donglei

论文摘要

A graph $G$ contains $H$ as an \emph{immersion} if there is an injective mapping $ϕ: V(H)\rightarrow V(G)$ such that for each edge $uv\in E(H)$, there is a path $P_{uv}$ in $G$ joining vertices $ϕ(u)$ and $ϕ(v)$, and all the paths $ p_ {uv} $,$ uv \在e(h)$中,是成对的边缘 - 偶数。哈德威格(Hadwiger)对莱斯库(Lescure)和梅尼尔(Meyniel)浸入集团的猜想的类似物,并由阿布·卡萨姆(Abu-Khzam)和兰斯顿(Langston)独立地指出,每个图$ g $都包含$ k_ {χ(g)} $作为沉浸式的。我们证明,对于任何常数$ \ varepsilon> 0 $和integers $ s,t \ ge2 $,存在$ d_0 = d_0 = d_0(\ varepsilon,s,t)$,使每个$ k_ {s,t} $ - 免费的图形$ g $ g $ g with $ d(g d_0这意味着上述猜想对于没有固定完整的两分图的图是渐近的。

A graph $G$ contains $H$ as an \emph{immersion} if there is an injective mapping $ϕ: V(H)\rightarrow V(G)$ such that for each edge $uv\in E(H)$, there is a path $P_{uv}$ in $G$ joining vertices $ϕ(u)$ and $ϕ(v)$, and all the paths $P_{uv}$, $uv\in E(H)$, are pairwise edge-disjoint. An analogue of Hadwiger's conjecture for the clique immersions by Lescure and Meyniel, and independently by Abu-Khzam and Langston, states that every graph $G$ contains $K_{χ(G)}$ as an immersion. We prove that for any constant $\varepsilon>0$ and integers $s,t\ge2$, there exists $d_0=d_0(\varepsilon,s,t)$ such that every $K_{s,t}$-free graph $G$ with $d(G)\ge d_0$ contains a clique immersion of order $(1-\varepsilon)d(G)$. This implies that the above-mentioned conjecture is asymptotically true for graphs without a fixed complete bipartite graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源