论文标题
用于分布式源编码的最佳测试通道的结构性特性,该源编码带有用于平方误差的多元高斯源的解码器侧信息
Structural Properties of Optimal Test Channels for Distributed Source Coding with Decoder Side Information for Multivariate Gaussian Sources with Square-Error Fidelity
论文作者
论文摘要
本文侧重于测试通道的结构属性,Wyner的操作信息率失真函数(RDF),$ \ overline {r}(Δ_x)$,是多变量相关的,共同独立且相同分布的高斯随机变量(rvs),$ \ \ \ \ \ w {x_t,y_t,y_t,y t,y tyt,$ \ wanty variables(RVS)的元素$ x_t:ω\ rightarrow {\ mathbb r}^{n_x} $,$ y_t:ω\ rightarrow {\ Mathbb r}^{n_y} $,在解码器上有平均均值错误e} \ sum_ {t = 1}^n || x_t - \ wideHat {x} _t ||^2 \leqΔ_x$,当$ \ {y_t \} _ {y_t \} _ {t = 1}^\ infty $是可用于解码器的侧面信息。我们构建了最佳测试渠道实现,该实现实现了信息RDF,$ \ operline {r}(δ_x)\ triangleq \ inf _ {{{\ cal m}(Δ_x)} i(x; z | y)$,其中$ {\ cal m}(Δ_x)$ a $ z $ z $ z $ Z $ p} _ {z | x,y} = {\ bf p} _ {z | x} $,$ \ wideHat {x} = f(y,z)$,和$ {\ bf e} \ {|| x- x- x- x- \ wideHat我们显示了基本结构属性:(1)实现RDF的最佳测试频道实现,$ \ overline {r}(Δ_x)$,满足条件独立性,$ {\ bf p} _ {x | \ wideHat {x},y,z} = {\ bf p} _ {x | \ wideHat {x},y},y} = {\ bf p} e} \ big \ {x \ big | \ wideHat {x},y,z \ big \ \} = {\ bf e} \ big \ \ {x \ big | \ big | \ big | \ wideHat {x} \ big \ big \ \} = \ wideHat {x} $ and(2) $ {r} _ {x | y}(Δ_x)\ triangleq \ inf _ {{\ bf p} _ {\ wideHat {x} | x,y}:{\ bf e} \ wideHat {x} | y)$,当$ \ {y_t \} _ {t = 1}^\ infty $都可以供索引和解码器,以及等值$ \ edline {r}(r}(δ_x)= {r} = {r} _ {x | y}(x | y}(x | y}(X | y})$。
This paper focuses on the structural properties of test channels, of Wyner's operational information rate distortion function (RDF), $\overline{R}(Δ_X)$, of a tuple of multivariate correlated, jointly independent and identically distributed Gaussian random variables (RVs), $\{X_t, Y_t\}_{t=1}^\infty$, $X_t: Ω\rightarrow {\mathbb R}^{n_x}$, $Y_t: Ω\rightarrow {\mathbb R}^{n_y}$, with average mean-square error at the decoder, $\frac{1}{n} {\bf E}\sum_{t=1}^n||X_t - \widehat{X}_t||^2\leq Δ_X$, when $\{Y_t\}_{t=1}^\infty$ is the side information available to the decoder only. We construct optimal test channel realizations, which achieve the informational RDF, $\overline{R}(Δ_X) \triangleq\inf_{{\cal M}(Δ_X)} I(X;Z|Y)$, where ${\cal M}(Δ_X)$ is the set of auxiliary RVs $Z$ such that, ${\bf P}_{Z|X,Y}={\bf P}_{Z|X}$, $\widehat{X}=f(Y,Z)$, and ${\bf E}\{||X-\widehat{X}||^2\}\leq Δ_X$. We show the fundamental structural properties: (1) Optimal test channel realizations that achieve the RDF, $\overline{R}(Δ_X)$, satisfy conditional independence, $ {\bf P}_{X|\widehat{X}, Y, Z}={\bf P}_{X|\widehat{X},Y}={\bf P}_{X|\widehat{X}}, \hspace{.2in} {\bf E}\Big\{X\Big|\widehat{X}, Y, Z\Big\}={\bf E}\Big\{X\Big|\widehat{X}\Big\}=\widehat{X} $ and (2) similarly for the conditional RDF, ${R}_{X|Y}(Δ_X) \triangleq \inf_{{\bf P}_{\widehat{X}|X,Y}:{\bf E}\{||X-\widehat{X}||^2\} \leq Δ_X} I(X; \widehat{X}|Y)$, when $\{Y_t\}_{t=1}^\infty$ is available to both the encoder and decoder, and the equality $\overline{R}(Δ_X)={R}_{X|Y}(Δ_X)$.