论文标题

穿过简单的anguilliform游泳者的参数子空间

Swimming through parameter subspaces of a simple anguilliform swimmer

论文作者

Battista, Nicholas A.

论文摘要

数十年来,计算科学家已经调查了许多不同系统的游泳性能。大多数模型取决于许多模型参数,并且性能对这些参数敏感。在本文中,参数子空间是定性鉴定的,其中存在着具有理想化的简单游泳模型的游泳性能,该模型类似于秀丽隐杆线虫,秀丽隐杆线虫是一种具有anguilliform sigonmotion模式的生物。计算模型使用浸没的边界方法来解决流体交互系统。 1D游泳者通过动态改变其首选的身体曲率来向前传播。观察结果表明,游泳者的性能似乎对流体量表和中风频率更为敏感,而不是整体上风或下文的速度和加速度的变化。在数据中还确定了类似帕累托的最佳阵线,以运输和游泳速度的成本。尽管这种方法允许人们以直截了当的方式定位鲁棒参数子空间,以实现所需的性能,但它以模拟数量级的成本比传统的流体结构相互作用研究更大。

Computational scientists have investigated swimming performance across a multitude of different systems for decades. Most models depend on numerous model parameters and performance is sensitive to those parameters. In this paper, parameter subspaces are qualitatively identified in which there exists enhanced swimming performance for an idealized, simple swimming model that resembles a C. elegans, an organism that exhibits an anguilliform mode of locomotion. The computational model uses the immersed boundary method to solve the fluid-interaction system. The 1D swimmer propagates itself forward by dynamically changing its preferred body curvature. Observations indicate that the swimmer's performance appears more sensitive to fluid scale and stroke frequency, rather than variations in the velocity and acceleration of either its upstroke or downstroke as a whole. Pareto-like optimal fronts were also identified within the data for the cost of transport and swimming speed. While this methodology allows one to locate robust parameter subspaces for desired performance in a straight-forward manner, it comes at the cost of simulating orders of magnitude more simulations than traditional fluid-structure interaction studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源