论文标题
Onsager主动软物质的变异原理
Onsager's variational principle in active soft matter
论文作者
论文摘要
Onsager的变分原理(OVP)最初是由Lars Onsager在1931年提出的[L. OnSager,$ PHYS。 Rev. $,1931年,$ 37 $,405]。该基本原理为制定热力学一致模型提供了非常强大的工具。也可以使用它来找到近似解决方案,尤其是在软物质动态的研究中。在这项工作中,OVP扩展并应用于活性软物质的动态建模,例如细菌的悬浮液和动物细胞的聚集体。我们首先将OVP的一般公式扩展到主动物质动力学,其中活性力是外部非保守力。然后,我们使用OVP来分析单个活动单元的定向运动:在刚性生物丝上行走的分子运动和玩具二球微功能。接下来,我们使用OVP来为固体基板上的有源极性液滴制定弥漫性接口模型。除了整体区域的活动极性流体的广义流体力学方程外,我们还得出了热力学一致的边界条件。最后,我们考虑了在润滑近似下薄的活性极液滴的动力学。我们使用OVP来得出广义的薄膜方程,然后使用OVP作为近似工具来找到薄的活性极性液滴的扩散定律。通过将生物系统的活性纳入OVP,我们开发了一种通用方法来构建热力学一致的模型,以更好地理解单个动物细胞和细胞聚集物或组织的新兴行为。
Onsager's variational principle (OVP) was originally proposed by Lars Onsager in 1931 [L. Onsager, $Phys. Rev.$, 1931, $37$, 405]. This fundamental principle provides a very powerful tool for formulating thermodynamically consistent models. It can also be employed to find approximate solutions, especially in the study of soft matter dynamics. In this work, OVP is extended and applied to the dynamic modeling of active soft matter such as suspensions of bacteria and aggregates of animal cells. We first extend the general formulation of OVP to active matter dynamics where active forces are included as external non-conservative forces. We then use OVP to analyze the directional motion of individual active units: a molecular motor walking on a stiff biofilament and a toy two-sphere microswimmer. Next, we use OVP to formulate a diffuse-interface model for an active polar droplet on a solid substrate. In addition to the generalized hydrodynamic equations for active polar fluids in the bulk region, we have also derived thermodynamically consistent boundary conditions. Finally, we consider the dynamics of a thin active polar droplet under the lubrication approximation. We use OVP to derive a generalized thin film equation and then employ OVP as an approximation tool to find the spreading laws for the thin active polar droplet. By incorporating the activity of biological systems into OVP, we develop a general approach to construct thermodynamically consistent models for better understanding the emergent behaviors of individual animal cells and cell aggregates or tissues.