论文标题
从分子气体的二维观察结果中重建三维密度
Reconstructing three-dimensional densities from two-dimensional observations of molecular gas
论文作者
论文摘要
长期以来,恒星形成一直是一个效率低下的过程,从某种意义上说,任何给定气云的质量的小部分$ε_{\ rm ff} $每个云免费时间都会转换为星星。但是,开发成功的恒星形成理论将需要测量$ε_ {\ rm ff} $的平均值及其从一个分子云到另一个分子云的散射。因为$ε_{\ rm ff} $是相对于自由下落时间测量的,所以此类测量需要准确地确定云体积密度。然而,迄今为止,从二维投影数据中衡量体积密度的努力依赖于将分子云视为简单均匀的球体,而它们的真实形状可能是丝状的,其密度分布远非统一。真实体积密度的结果不确定性可能是$ε_ {\ rm ff} $的观察性估计值的主要错误来源之一。在本文中,我们使用一系列模拟湍流,磁化,辐射,自我磨碎的恒星形成云,以检查是否有可能获得更准确的体积密度估计,从而减少此误差。我们从模拟中创建模拟观察,并表明当前的分析方法依靠球形假设可能会产生〜0.26 DEX低估,并且在体积密度估计中〜0.51 DEX错误,对应于〜0.13 Dex高估和A 〜0.25 Dex在$ 0.25 DEX中的散布,$ε_{\ rm ff ff} $,可与散布相比。我们构建了一个预测模型,该模型使用可在二维测量中访问的信息(最明显的表面密度分布的Gini系数)来估计量较小的散射量〜0.3 dex的量密度。我们在最近对Ophiuchus Cloud的观察结果上测试了我们的方法,并证明它成功地减少了$ε_ {\ rm ff} $ scatter。
Star formation has long been known to be an inefficient process, in the sense that only a small fraction $ε_{\rm ff}$ of the mass of any given gas cloud is converted to stars per cloud free-fall time. However, developing a successful theory of star formation will require measurements of both the mean value of $ε_{\rm ff}$ and its scatter from one molecular cloud to another. Because $ε_{\rm ff}$ is measured relative to the free-fall time, such measurements require accurate determinations of cloud volume densities. Efforts to measure the volume density from two-dimensional projected data, however, have thus far relied on treating molecular clouds as simple uniform spheres, while their real shapes are likely filamentary and their density distributions far from uniform. The resulting uncertainty in the true volume density is likely one of the major sources of error in observational estimates of $ε_{\rm ff}$. In this paper, we use a suite of simulations of turbulent, magnetized, radiative, self-gravitating star-forming clouds to examine whether it is possible to obtain more accurate volume density estimates and thereby reduce this error. We create mock observations from simulations, and show that current analysis methods relying on the spherical assumption likely yield ~ 0.26 dex underestimations and ~ 0.51 dex errors in volume density estimates, corresponding to a ~ 0.13 dex overestimation and a ~ 0.25 dex scatter in $ε_{\rm ff}$, comparable to the scatter in observed cloud samples. We build a predictive model that uses information accessible in two-dimensional measurements -- most significantly the Gini coefficient of the surface density distribution -- to estimate volume density with ~ 0.3 dex less scatter. We test our method on a recent observation of the Ophiuchus cloud, and show that it successfully reduces the $ε_{\rm ff}$ scatter.