论文标题

多代理驾驶环境中的新兴道路规则

Emergent Road Rules In Multi-Agent Driving Environments

论文作者

Pal, Avik, Philion, Jonah, Liao, Yuan-Hong, Fidler, Sanja

论文摘要

为了使自动驾驶汽车与人类驾驶员安全共享道路,自动驾驶汽车必须遵守人类司机同意遵循的特定“道路规则”。 “道路规则”包括规则,要求驾驶员必须按照法律遵守(例如车辆在红灯处停止的要求)以及更微妙的社会规则 - 例如,高速公路上的快速车道的隐式指定。在本文中,我们提供了经验证据,表明 - 而不是对自动驾驶算法进行硬编码的道路规则,可扩展的替代方案可能是设计多机构环境,其中道路规则作为最大程度地提高交通流的最佳解决方案。我们分析驾驶环境中的成分导致这些道路规则的出现,发现两个关键因素是嘈杂的感知和代理的空间密度。我们提供了七种社会驾驶行为的出现的定性和定量证据,从服从交通信号到以下车道,从训练代理商到迅速驾驶到目的地而没有相撞。我们的结果为全球各国为安全,高效驾驶所商定的社会道路规则提供了经验支持。

For autonomous vehicles to safely share the road with human drivers, autonomous vehicles must abide by specific "road rules" that human drivers have agreed to follow. "Road rules" include rules that drivers are required to follow by law -- such as the requirement that vehicles stop at red lights -- as well as more subtle social rules -- such as the implicit designation of fast lanes on the highway. In this paper, we provide empirical evidence that suggests that -- instead of hard-coding road rules into self-driving algorithms -- a scalable alternative may be to design multi-agent environments in which road rules emerge as optimal solutions to the problem of maximizing traffic flow. We analyze what ingredients in driving environments cause the emergence of these road rules and find that two crucial factors are noisy perception and agents' spatial density. We provide qualitative and quantitative evidence of the emergence of seven social driving behaviors, ranging from obeying traffic signals to following lanes, all of which emerge from training agents to drive quickly to destinations without colliding. Our results add empirical support for the social road rules that countries worldwide have agreed on for safe, efficient driving.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源