论文标题
对象重新排列使用隐式碰撞功能
Object Rearrangement Using Learned Implicit Collision Functions
论文作者
论文摘要
机器人对象重排结合了拾取和放置物体的技能。当对象模型不可用时,典型的碰撞检查模型可能无法预测与阻塞的部分点云中的碰撞,从而产生无碰撞的抓握或放置轨迹具有挑战性。我们提出了一个学习的碰撞模型,该模型接受场景和查询对象点云,并预测场景中6DOF对象的碰撞。我们在100万场景/对象点云对和20亿碰撞查询的合成集上训练该模型。我们利用桌面重排任务中的模型预测路径积分(MPPI)策略的一部分来利用学识渊博的碰撞模型,并表明该策略可以计划在模拟和物理杂物场景中与Franka Panda panda机器人在模拟和物理杂物场景中看不见的物体的无冲突的抓取和位置。博学的模型在模拟碰撞查询数据集上的准确性优于传统管道,并学到了9.8%的消融,并且比表现最好的基线快75倍。视频和补充材料可在https://research.nvidia.com/publication/2021-03_object-rearrangement-usudus获得。
Robotic object rearrangement combines the skills of picking and placing objects. When object models are unavailable, typical collision-checking models may be unable to predict collisions in partial point clouds with occlusions, making generation of collision-free grasping or placement trajectories challenging. We propose a learned collision model that accepts scene and query object point clouds and predicts collisions for 6DOF object poses within the scene. We train the model on a synthetic set of 1 million scene/object point cloud pairs and 2 billion collision queries. We leverage the learned collision model as part of a model predictive path integral (MPPI) policy in a tabletop rearrangement task and show that the policy can plan collision-free grasps and placements for objects unseen in training in both simulated and physical cluttered scenes with a Franka Panda robot. The learned model outperforms both traditional pipelines and learned ablations by 9.8% in accuracy on a dataset of simulated collision queries and is 75x faster than the best-performing baseline. Videos and supplementary material are available at https://research.nvidia.com/publication/2021-03_Object-Rearrangement-Using.