论文标题
量子点密度的晶圆尺度外延调制
Wafer-Scale Epitaxial Modulation of Quantum Dot Density
论文作者
论文摘要
半导体量子点(QD)的性能的精确控制对于为量子光子学和高级光电的新设备创建新型设备至关重要。适合单个QD设备和实验的合适的QD密度在外交期间控制着具有挑战性,通常仅在晶片的有限区域中发现。在这里,我们证明了如何使用传统的分子束外延(MBE)来调节单一和二维模式的光学活性QD的密度,同时仍然保持出色的质量。我们发现,逐层生长过程中的物质厚度梯度导致整个晶圆的表面粗糙度调制。此类模板上的生长强烈影响QD成核的概率。我们获得1至10 QD/$μm^{2} $的密度调制,从几毫米到至少几百微米的周期。这种新颖的方法是通用的,预计将适用于多种不同的半导体材料系统。我们应用该方法来使超低噪声QD在整个3英寸半导体晶圆上生长。
Precise control of the properties of semiconductor quantum dots (QDs) is vital for creating novel devices for quantum photonics and advanced opto-electronics. Suitable low QD-density for single QD devices and experiments are challenging to control during epitaxy and are typically found only in limited regions of the wafer. Here, we demonstrate how conventional molecular beam epitaxy (MBE) can be used to modulate the density of optically active QDs in one- and two- dimensional patterns, while still retaining excellent quality. We find that material thickness gradients during layer-by-layer growth result in surface roughness modulations across the whole wafer. Growth on such templates strongly influences the QD nucleation probability. We obtain density modulations between 1 and 10 QDs/$μm^{2}$ and periods ranging from several millimeters down to at least a few hundred microns. This novel method is universal and expected to be applicable to a wide variety of different semiconductor material systems. We apply the method to enable growth of ultra-low noise QDs across an entire 3-inch semiconductor wafer.