论文标题
无限衍生物非本地希格格斯的质量差距:戴森·辛辛格
Mass Gap in Infinite Derivative Non-local Higgs: Dyson-Schwinger Approach
论文作者
论文摘要
我们研究了已提出的非本地希格斯理论类别的非扰动自由度,这些理论是紫外线完成的4-D量子场理论(QFT),将动能运算符推广到一系列受其灵感启发的无限衍生物。在扰动层面,非本地希格格的自由度与局部理论相同。我们证明,在非扰动水平上,希格斯质量的物理光谱实际上是从作用中存在的“无限数量的衍生物数”中校正的。我们使用的技术可以以微分形式得出Dyson-Schwinger方程组的集合。当已知局部方程的精确解决方案时,这实际上证明是有用的。我们表明,涉及Dyson-Schwinger方法的本地理论的所有形式主义都非常自然地扩展到非本地案例。使用这些方法,非本地理论的频谱在非扰动制度中变得可访问和可预测。我们计算N点相关函数,并预测纯粹由自我交互和非本地尺度的光谱中的质量差距。产生的质量间隙在紫外线中受阻,并达到共形极限。我们讨论了我们在粒子物理和宇宙学中的结果。
We investigate the non-perturbative degrees of freedom in the class of non-local Higgs theories that have been proposed as an ultraviolet completion 4-D Quantum Field Theory (QFT) generalizing the kinetic energy operators to an infinite series of higher derivatives inspired by string field theory. At the perturbative level, the degrees of freedom of non-local Higgs are the same of the local theory. We prove that, at the non-perturbative level, the physical spectrum of the Higgs mass is actually corrected from the "infinite number of derivatives" present in the action. The technique we use permits to derive the set of Dyson-Schwinger equations in differential form. This proves essentially useful when exact solutions to the local equations are known. We show that all the formalism of the local theory involving the Dyson-Schwinger approach extends quite naturally to the non-local case. Using these methods, the spectrum of non-local theories become accessible and predictable in the non-perturbative regimes. We calculate the N-point correlation functions and predict the mass-gap in the spectrum arising purely from the self-interaction and the non-local scale M. The mass gap generated gets damped in the UV and it reaches conformal limit. We discuss some implications of our result in particle physics and cosmology.