论文标题
湍流的气泡变形
Bubble deformation by a turbulent flow
论文作者
论文摘要
我们研究了浸入均质和各向同性湍流背景流中的最初球形气泡的变形模式。我们对两相不可压缩的Navier-Stokes方程进行了直接的数值模拟,考虑到使用空气水密度比以各种Weber数字(湍流和表面张力力的比率)的高密度湍流中的低密度气泡。我们讨论使用球形谐波分解的湍流中气泡变形的理论框架。对于每种气泡变形模式,我们提出了由速度和压力波动统计给出的强迫项,该术语在同一半径的球体上进行了评估。这种方法正式将气泡变形和背景湍流速度波动与小变形的极限相关联。总表面变形和每个单独模式的生长是使用气泡表面的适当伏诺分解的直接数值模拟计算的。我们表明,发生了两个连续的时间状态:第一个状态对应于仅由惯性力驱动的变形,并且界面变形在及时线性增长,与模型预测一致,而第二条制度是由惯性力和表面张力之间的平衡而产生的。两个机制之间的过渡时间是由第一个雷利气泡振荡模式的时期给出的。我们讨论如何使用我们的方法将气泡寿命与湍流统计数据联系起来,并最终表明,在较高的Weber数字下,可以从气泡尺度上的湍流波动统计数据中推论出气泡寿命。
We investigate the modes of deformation of an initially spherical bubble immersed in a homogeneous and isotropic turbulent background flow. We perform direct numerical simulations of the two-phase incompressible Navier-Stokes equations, considering a low-density bubble in the high density turbulent flow at various Weber number (the ratio of turbulent and surface tension forces) using the air-water density ratio. We discuss a theoretical framework for the bubble deformation in a turbulent flow using a spherical harmonic decomposition. We propose, for each mode of bubble deformation, a forcing term given by the statistics of velocity and pressure fluctuations, evaluated on a sphere of the same radius. This approach formally relates the bubble deformation and the background turbulent velocity fluctuations, in the limit of small deformations. The growth of the total surface deformation and of each individual mode is computed from the direct numerical simulations using an appropriate Voronoi decomposition of the bubble surface. We show that two successive temporal regimes occur: the first regime corresponds to deformations driven only by inertial forces, with the interface deformation growing linearly in time, in agreement with the model predictions, whereas the second regime results from a balance between inertial forces and surface tension. The transition time between the two regimes is given by the period of the first Rayleigh mode of bubble oscillation. We discuss how our approach can be used to relate the bubble lifetime to the turbulence statistics and eventually show that at high Weber number, bubble lifetime can be deduced from the statistics of turbulent fluctuations at the bubble scale.