论文标题
在二面体组的交点图上
On Intersection Graph of Dihedral Group
论文作者
论文摘要
令$ g $为有限的组。 $ g $的交点图是一个图形,其顶点集是$ g $的所有适当的非平凡子组的集合,并且两个不同的顶点$ h $和$ k $在且仅当$ h \ cap k \ neq \ neq \ neq \ {e \ {e \} $时才相邻,其中$ e $是集团$ g $的标识。在本文中,我们研究了一些属性,并探讨了一些拓扑指标,例如Wiener,Hyper-Wiener,第一和第二Zagreb,Schultz,Gutman,Gutman和Ectentric连接指数$ d_ {2n} $的交叉路口图指数,$ n = p^2 $,$ p $是PRIME。我们还找到了$ d_ {2p^2} $的交点图的度量尺寸和多项式。
Let $G$ be a finite group. The intersection graph of $G$ is a graph whose vertex set is the set of all proper non-trivial subgroups of $G$ and two distinct vertices $H$ and $K$ are adjacent if and only if $H\cap K \neq \{e\}$, where $e$ is the identity of the group $G$. In this paper, we investigate some properties and exploring some topological indices such as Wiener, Hyper-Wiener, first and second Zagreb, Schultz, Gutman and eccentric connectivity indices of the intersection graph of $D_{2n}$ for $n=p^2$, $p$ is prime. We also find the metric dimension and the resolving polynomial of the intersection graph of $D_{2p^2}$.