论文标题
关于皮莱(Pillai)的先验数字问题
On a variant of Pillai's problem with transcendental numbers
论文作者
论文摘要
在本文中,我们研究了解决方案数量$(m,n)\ in \ mathbb {n}^2 $的渐近行为$ | | α^n -β^m | \ leq x $当$ x $倾向于无限。在此,$α,β$用$ |α|给出了多个独立的复数。 > 1 $和$ |β|> 1 $。
In this paper, we study the asymptotic behaviour of the number of solutions $(m, n)\in \mathbb{N}^2$ to the inequality $ | α^n - β^m | \leq x $ when $x$ tends to infinity. Here $α, β$ are given multiplicatively independent complex numbers with $|α| > 1$ and $|β|>1$.