论文标题

广义的Susskind-Glogower相干状态

Generalized Susskind-Glogower coherent states

论文作者

Gazeau, Jean-Pierre, Hussin, Véronique, Moran, James, Zelaya, Kevin

论文摘要

Susskind-Glogower相干状态的Fock扩展系数包括Bessel功能,最近引起了对其光学特性的极大关注。然而,身份分辨率仍然是一个悬而未决的问题,这是一个必不可少的数学属性,它定义了Fock空间中的过度基础并允许连贯的状态量化图。在这方面,已将改良的Susskind-Glogower相干状态作为解决身份分辨率的替代国家引入。在当前的手稿中,利用了与修改后的Susskind-Glogower相干状态相关的量化图,这自然会导致其离散系列中$ \ Mathfrak {su}(1,1)$ lie代数的特定表示。后者通过扩展第一类Bessel函数的索引,并通过采用第二种修改后的Bessel函数来扩展有关相干状态的进一步概括的证据,这些证据是由Susskind-Glogower构建的。以这种形式,引入了Susskind-Glogower-I和Susskind-Glogower-II连贯状态的新家庭。构建了相应的量化图,以便它们导致$ \ mathfrak {su}(1,1)$和$ \ mathfrak {su}(2)$ lie代数为su $(1,1)$(1,1)$和su $ $(2)$单位的不可转移表示形式的元素的一般表示。为了完整性,探索了与新的连贯状态家族有关的光学特性,并与一些众所周知的光学状态进行了比较。

Susskind-Glogower coherent states, whose Fock expansion coefficients include Bessel functions, have recently attracted considerable attention for their optical properties. Nevertheless, identity resolution is still an open question, which is an essential mathematical property that defines an overcomplete basis in the Fock space and allows a coherent state quantization map. In this regard, the modified Susskind-Glogower coherent states have been introduced as an alternative family of states that resolve the identity resolution. In the present manuscript, the quantization map related to the modified Susskind-Glogower coherent states is exploited, which naturally leads to a particular representation of the $\mathfrak{su}(1,1)$ Lie algebra in its discrete series. The latter provides evidence about further generalizations of coherent states, built from the Susskind-Glogower ones by extending the indexes of the Bessel functions of the first kind and, alternatively, by employing the modified Bessel functions of the second kind. In this form, the new families of Susskind-Glogower-I and Susskind-Glogower-II coherent states are introduced. The corresponding quantization maps are constructed so that they lead to general representations of elements of the $\mathfrak{su}(1,1)$ and $\mathfrak{su}(2)$ Lie algebras as generators of the SU$(1,1)$ and SU$(2)$ unitary irreducible representations respectively. For completeness, the optical properties related to the new families of coherent states are explored and compared with respect to some well-known optical states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源