论文标题

基于GAN的球螺钉驱动图片数据库扩大故障分类

GAN based ball screw drive picture database enlargement for failure classification

论文作者

Schlagenhauf, Tobias, Sun, Chenwei, Fleischer, Jürgen

论文摘要

缺乏可靠的大型数据集是在制造业中使用现代机器学习方法的最大困难之一。为了开发球螺钉表面故障分类的功能,需要足够的表面故障图像数据。当训练基于小数据集的神经网络模型时,受过训练的模型可能缺乏概括能力,并且在实践中可能表现较差。本文的主要目的是基于生成对抗网络(GAN)生成合成图像,以扩大球螺钉表面故障的图像数据集。在本文中选择的球螺钉表面上的两种可能的故障类型是代表表面故障类别的两种可能的故障类型。随后使用定性方法(包括专家观察,T-SNE可视化和FID得分的定量方法)评估生成图像的质量和多样性。为了验证基于GAN的生成图像是否可以提高故障分类性能,实际图像数据集得到了增强并用基于GAN的基于GAN的生成图像替换以执行分类任务。作者成功地创建了基于GAN的球螺钉表面故障图像,该图像对分类测试性能显示了积极影响。

The lack of reliable large datasets is one of the biggest difficulties of using modern machine learning methods in the field of failure detection in the manufacturing industry. In order to develop the function of failure classification for ball screw surface, sufficient image data of surface failures is necessary. When training a neural network model based on a small dataset, the trained model may lack the generalization ability and may perform poorly in practice. The main goal of this paper is to generate synthetic images based on the generative adversarial network (GAN) to enlarge the image dataset of ball screw surface failures. Pitting failure and rust failure are two possible failure types on ball screw surface chosen in this paper to represent the surface failure classes. The quality and diversity of generated images are evaluated afterwards using qualitative methods including expert observation, t-SNE visualization and the quantitative method of FID score. To verify whether the GAN based generated images can increase failure classification performance, the real image dataset was augmented and replaced by GAN based generated images to do the classification task. The authors successfully created GAN based images of ball screw surface failures which showed positive effect on classification test performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源