论文标题
正-P,Q和两倍的相空间表示中的多个时间相关性
Multi-time correlations in the positive-P, Q, and doubled phase-space representations
论文作者
论文摘要
在量子力学的相空间表示中计算多个时间相关性的许多物理直觉结果。它们将时间依赖性随机样品与多时间可观察物联系起来,并依赖于无衍生的操作员身份的存在。特别是,得出了正常p分布中时间排定的正常可观察物的表达式,这些表达式被得出,用裸露的时间依赖性的随机变量代替了海森堡操作员,证实了Glauber-sudarshan P.类似表达的早期结果的扩展,以抗平均阶段的阶段代表性地代表,并确认相类似的表达式,并确认均与均正态的阶段相对级别的相对级别的相关性。然后显示后者很容易被利用,以进一步计算正正态和混合订购的多时间可观察物中的阳性,智能和双轴表示。哪些混合订单可观察物是可调的,没有指示,并且明确的级数最多可达第4阶。总体而言,扩展了相位空间表示中量子多时间可观察的理论,从而允许对许多情况进行非扰动治疗。使用非常规的光子阻滞系统和相关的玻色 - 哈伯德链的随机模拟证明了结果对大型系统的准确性,可用性和可伸缩性。此外,还提供了一种可靠但简单的算法,用于整合相位空间样品的随机方程。
A number of physically intuitive results for the calculation of multi-time correlations in phase-space representations of quantum mechanics are obtained. They relate time-dependent stochastic samples to multi-time observables, and rely on the presence of derivative-free operator identities. In particular, expressions for time-ordered normal-ordered observables in the positive-P distribution are derived which replace Heisenberg operators with the bare time-dependent stochastic variables, confirming extension of earlier such results for the Glauber-Sudarshan P. Analogous expressions are found for the anti-normal-ordered case of the doubled phase-space Q representation, along with conversion rules among doubled phase-space s-ordered representations. The latter are then shown to be readily exploited to further calculate anti-normal and mixed-ordered multi-time observables in the positive-P, Wigner, and doubled-Wigner representations. Which mixed-order observables are amenable and which are not is indicated, and explicit tallies are given up to 4th order. Overall, the theory of quantum multi-time observables in phase-space representations is extended, allowing non-perturbative treatment of many cases. The accuracy, usability, and scalability of the results to large systems is demonstrated using stochastic simulations of the unconventional photon blockade system and a related Bose-Hubbard chain. In addition, a robust but simple algorithm for integration of stochastic equations for phase-space samples is provided.