论文标题
SIC中的自旋结构和自旋1/2缺陷的共振驱动
Spin Structure and Resonant Driving of Spin-1/2 Defects in SiC
论文作者
论文摘要
碳化硅中的过渡金属(TM)缺陷具有良好的自旋相干性能,适合作为量子通信的量子记忆。为了将TM缺陷描述为量子自旋式界面,我们建模缺陷,这些缺陷在原子$ d $ shell中具有一个带有自旋1/2的活性电子。旋转结构以及活性电子的磁性和光学共振性能从晶体电势和自旋轨道耦合的相互作用中出现,并通过使用组理论得出的一般模型来描述。我们发现自旋轨道耦合会导致额外的允许过渡和$ g $ -TENSOR的修改。为了描述拉比频率对静态和驱动场的大小和方向的依赖性,我们得出了有效的哈密顿量。这种理论描述也可以对执行和优化TM缺陷中的自旋控制有助于。
Transition metal (TM) defects in silicon carbide have favorable spin coherence properties and are suitable as quantum memory for quantum communication. To characterize TM defects as quantum spin-photon interfaces, we model defects that have one active electron with spin 1/2 in the atomic $D$ shell. The spin structure, as well as the magnetic and optical resonance properties of the active electron emerge from the interplay of the crystal potential and spin-orbit coupling and are described by a general model derived using group theory. We find that the spin-orbit coupling leads to additional allowed transitions and a modification of the $g$-tensor. To describe the dependence of the Rabi frequency on the magnitude and direction of the static and driving fields, we derive an effective Hamiltonian. This theoretical description can also be instrumental to perform and optimize spin control in TM defects.