论文标题

超速Paths

Hyperpaths

论文作者

Dahari, Amir, Linial, Nati

论文摘要

大型是图理论树的高维对应物。他们引起了各种调查人员的广泛关注。在这里,我们介绍和研究HyperPath - 一种特定的大型体系,它们是图理论中路径的高维类似物。 $ d $二维超同行是一个$ d $ d $二维大型乳房,其中每个$(d-1)$ - 尺寸面部最多包含在$(D+1)$ d $的面孔中。我们为每个维度引入了一个可能是无限的超同行家族,并在尺寸$ d = 2 $的深度研究其属性。

Hypertrees are high-dimensional counterparts of graph theoretic trees. They have attracted a great deal of attention by various investigators. Here we introduce and study Hyperpaths -- a particular class of hypertrees which are high dimensional analogs of paths in graph theory. A $d$-dimensional hyperpath is a $d$-dimensional hypertree in which every $(d-1)$-dimensional face is contained in at most $(d+1)$ faces of dimension $d$. We introduce a possibly infinite family of hyperpaths for every dimension, and investigate its properties in greater depth for dimension $d=2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源