论文标题

随机热带气旋降水场产生

Stochastic Tropical Cyclone Precipitation Field Generation

论文作者

Kleiber, William, Sain, Stephan, Madaus, Luke, Harr, Patrick

论文摘要

热带气旋是沿海洪水的重要驱动因素,具有严重的公共安全和经济后果。由于这种事件很少发生,因此高空间和时间分辨率的历史风暴降水数据受到限制。本文介绍了统计的热带气旋时空沉淀生成器,因为来自Storm Track数据集的信息有限。鉴于在历史或模拟的风暴轨道集合中常见的少数预测变量,例如风暴中心的压力不足,最大风,风暴中心和方向的半径以及到海岸的距离,拟议的随机模型会在研究领域产生定量沉淀的时空场。统计上新颖的方面包括该模型是在拉格朗日坐标中开发的,相对于动态风暴中心,该中心使用低级别表示的想法以及圆形过程模型。该模型经过了来自墨西哥湾和美国南部的高级天气预测模型的一组热带气旋数据的培训,并通过交叉验证进行了验证。结果表明,该模型适当地捕获了旋风降水模式的空间不对称性,总降水量以及沿海岸的一组案例研究地点的局部降水分布。

Tropical cyclones are important drivers of coastal flooding which have severe negative public safety and economic consequences. Due to the rare occurrence of such events, high spatial and temporal resolution historical storm precipitation data are limited in availability. This paper introduces a statistical tropical cyclone space-time precipitation generator given limited information from storm track datasets. Given a handful of predictor variables that are common in either historical or simulated storm track ensembles such as pressure deficit at the storm's center, radius of maximal winds, storm center and direction, and distance to coast, the proposed stochastic model generates space-time fields of quantitative precipitation over the study domain. Statistically novel aspects include that the model is developed in Lagrangian coordinates with respect to the dynamic storm center that uses ideas from low-rank representations along with circular process models. The model is trained on a set of tropical cyclone data from an advanced weather forecasting model over the Gulf of Mexico and southern United States, and is validated by cross-validation. Results show the model appropriately captures spatial asymmetry of cyclone precipitation patterns, total precipitation as well as the local distribution of precipitation at a set of case study locations along the coast.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源