论文标题
$(3+1)$尺寸小晶格系统中阳米尔斯理论的热化
Thermalization of Yang-Mills theory in a $(3+1)$ dimensional small lattice system
论文作者
论文摘要
我们研究了SU($ 2 $)Yang-Mills理论的实时演变,互动后的$(3+1)$尺寸小晶格系统。我们在数值上用Kogut-susskind Hamiltonian在通过求解高斯法律约束获得的物理希尔伯特空间中使用Kogut-Susskind Hamiltonian求解Schr {Ö} dinger方程。我们观察到威尔逊循环的热度到规范状态。放松时间对耦合强度不敏感,估计为$τ_{\ rm eq} \ sim2π/t $,温度为$ t $在稳态下。我们还计算真空持久性概率(Loschmidt Echo),以了解波函数动力学的放松。
We study the real-time evolution of SU($2$) Yang-Mills theory in a $(3+1)$ dimensional small lattice system after interaction quench. We numerically solve the Schr{ö}dinger equation with the Kogut-Susskind Hamiltonian in the physical Hilbert space obtained by solving Gauss law constraints. We observe the thermalization of a Wilson loop to the canonical state; the relaxation time is insensitive to the coupling strength, and estimated as $τ_{\rm eq}\sim 2π/T$ with temperatures $T$ at steady states. We also compute the vacuum persistence probability (the Loschmidt echo) to understand the relaxation from the dynamics of the wave function.