论文标题

$ b _ {(s)} \ to \ {k^{(*)}中的非本地矩阵元素

Non-local matrix elements in $B_{(s)}\to \{K^{(*)},ϕ\}\ell^+\ell^-$

论文作者

Gubernari, Nico, van Dyk, Danny, Virto, Javier

论文摘要

我们在稀有$ \ bar {b} _ {(s)} \ to \ lbrace \ bar {k}^{(*)},ϕ \ rbrace \ el^ell^ell^el^+el^+el^ - $ and $ and $ bar lbrace {(k}^{(*){k}^+el^+el^ - $ and $ bar lbrace {(*) \ bar {k}^{*},ϕ \rbraceγ$衰减。我们通过两种方式改善了这些矩阵元素的当前状态。首先,我们使用$ b $ -Meson Light-Cone Sum规则重新计算Light-Cone Ope中所需的HADRONIC矩阵元素。我们的分析结果取代了文献中的结果。我们讨论了我们的改进的起源,并为所考虑的过程提供了数值结果。其次,我们得出在非本地矩阵元素上结合的第一个色散。它为使用$ z $扩展的矩阵元素推断到大型时间表动量传输的截断误差提供了一个参数句柄。我们说明了在简单的现象学应用中绑定的色散的力量。作为我们工作的一方面,我们还为$ b_s \ to ϕ $ form from $ b $ -Meson轻键总和规则提供了数值结果。

We revisit the theoretical predictions and the parametrization of non-local matrix elements in rare $\bar{B}_{(s)}\to \lbrace \bar{K}^{(*)},ϕ\rbrace\ell^+\ell^-$ and $\bar{B}_{(s)}\to \lbrace \bar{K}^{*}, ϕ\rbrace γ$ decays. We improve upon the current state of these matrix elements in two ways. First, we recalculate the hadronic matrix elements needed at subleading power in the light-cone OPE using $B$-meson light-cone sum rules. Our analytical results supersede those in the literature. We discuss the origin of our improvements and provide numerical results for the processes under consideration. Second, we derive the first dispersive bound on the non-local matrix elements. It provides a parametric handle on the truncation error in extrapolations of the matrix elements to large timelike momentum transfer using the $z$ expansion. We illustrate the power of the dispersive bound at the hand of a simple phenomenological application. As a side result of our work, we also provide numerical results for the $B_s \to ϕ$ form factors from $B$-meson light-cone sum rules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源