论文标题
使用人工神经网络对缺血性心脏病进行新颖的分类
Novel Classification of Ischemic Heart Disease Using Artificial Neural Network
论文作者
论文摘要
缺血性心脏病(IHD),尤其是其慢性稳定形式,是一种微妙的病理学,由于其沉默行为,然后在不稳定的肾小管,心肌梗塞或猝死中发育。应用于提取的参数心率变异性(HRV)信号的机器学习技术似乎是一些心脏病的早期诊断中的宝贵支持。但是,到目前为止,使用适用于有限数量的HRV参数的人工神经网络(ANN)鉴定了IHD患者,仅适用于极少数受试者。在这项研究中,我们使用了应用于ANN的几种线性和非线性HRV参数,以便在965个受试者样本的大量同类中确认这些结果,并确定哪些特征可以区分具有高精度的IHD患者。通过使用主成分分析和逐步回归,我们将原始17个参数降低为5个,用作输入,用于一系列ANN。使用平均值,LFN,SD1,性别和年龄参数以及两个隐藏的神经元,实现了82%的最高精度。
Ischemic heart disease (IHD), particularly in its chronic stable form, is a subtle pathology due to its silent behavior before developing in unstable angina, myocardial infarction or sudden cardiac death. Machine learning techniques applied to parameters extracted form heart rate variability (HRV) signal seem to be a valuable support in the early diagnosis of some cardiac diseases. However, so far, IHD patients were identified using Artificial Neural Networks (ANNs) applied to a limited number of HRV parameters and only to very few subjects. In this study, we used several linear and non-linear HRV parameters applied to ANNs, in order to confirm these results on a large cohort of 965 sample of subjects and to identify which features could discriminate IHD patients with high accuracy. By using principal component analysis and stepwise regression, we reduced the original 17 parameters to five, used as inputs, for a series of ANNs. The highest accuracy of 82% was achieved using meanRR, LFn, SD1, gender and age parameters and two hidden neurons.