论文标题

FreeCyto:Web的量化流式细胞仪分析

Freecyto: Quantized Flow Cytometry Analysis for the Web

论文作者

Wong, Nathan, Kim, Daehwan, Robinson, Zachery, Huang, Connie, Conboy, Irina M.

论文摘要

流式细胞仪(FCM)是一种分析技术,能够检测和记录人群中细胞或颗粒(共同称为“事件”)的荧光和光散射的发射。典型的FCM实验可以产生大量数据,从而使分析在计算中进行密集。当前的FCM数据分析平台(FlowJo等)虽然非常有用,但由于数据尺寸限制,不允许在线处理交互式数据处理。在这里,我们报告了一种更有效的分析FCM数据的方法。 FreeCyto是一种免费的,易于学习的,基于Python-Flask的Web应用程序,它使用加权K-均值聚类算法来促进流式细胞仪数据的交互式分析。网络浏览器的关键限制是它们无法交互显示大量数据。 FreeCyto通过使用K-Means算法来量化数据,从而解决此瓶颈,从而使用户可以访问一组代表性的数据点以进行复杂数据集的交互式可视化。此外,freecyto可以在保留标准的FCM可视化特征的同时,进行大型复杂数据集的交互分析,例如散点图(点图)的生成,直方图,直方图,热图,盒子图以及基于SQL的子群体人口组建门。我们还表明,可以将FreeCyto应用于经常需要使用FCM的各种实验设置的分析。最后,我们证明当将FreeCyto与常规FCM软件进行比较时,可以保留数据的准确性。

Flow cytometry (FCM) is an analytic technique that is capable of detecting and recording the emission of fluorescence and light scattering of cells or particles (that are collectively called "events") in a population. A typical FCM experiment can produce a large array of data making the analysis computationally intensive. Current FCM data analysis platforms (FlowJo, etc.), while very useful, do not allow interactive data processing online due to the data size limitations. Here we report a more effective way to analyze FCM data. Freecyto is a free, easy-to-learn, Python-flask-based web application that uses a weighted k-means clustering algorithm to facilitate the interactive analysis of flow cytometry data. A key limitation of web browsers is their inability to interactively display large amounts of data. Freecyto addresses this bottleneck through the use of the k-means algorithm to quantize the data, allowing the user to access a representative set of data points for interactive visualization of complex datasets. Moreover, Freecyto enables the interactive analyses of large complex datasets while preserving the standard FCM visualization features, such as the generation of scatterplots (dotplots), histograms, heatmaps, boxplots, as well as a SQL-based sub-population gating feature. We also show that Freecyto can be applied to the analysis of various experimental setups that frequently require the use of FCM. Finally, we demonstrate that the data accuracy is preserved when Freecyto is compared to conventional FCM software.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源