论文标题

Socaire:预测和监视马德里的城市空气质量

SOCAIRE: Forecasting and Monitoring Urban Air Quality in Madrid

论文作者

de Medrano, Rodrigo, Remiro, Víctor de Buen, Aznarte, José L.

论文摘要

由于高污染物浓度对公共卫生和城市规划管理的主要问题,空气质量已成为公共卫生和城市规划管理的主要问题之一。考虑到世界各地城市为了面对频繁的空气质量发作所采取的缓解措施,预见未来污染物浓度的能力非常重要。通过本文,我们提出了Socaire,这是一种基于神经和统计嵌套模型的贝叶斯和时空集合的操作工具。 Socaire整合了内源性和外源信息,以预测和监测马德里市几种污染物的浓度的未来分布。它着重于建模可能在空气质量中发挥作用的每个可用组件:过去的污染物,人类活动,数值污染估计和数值天气预测。该工具目前在马德里运营,在接下来的48小时内产生每日空气质量预测,并预测该市官方空气质量中包含的措施的可能性通过有关复合事件的概率推断而进行的。

Air quality has become one of the main issues in public health and urban planning management, due to the proven adverse effects of high pollutant concentrations. Considering the mitigation measures that cities all over the world are taking in order to face frequent low air quality episodes, the capability of foreseeing future pollutant concentrations is of great importance. Through this paper, we present SOCAIRE, an operational tool based on a Bayesian and spatiotemporal ensemble of neural and statistical nested models. SOCAIRE integrates endogenous and exogenous information in order to predict and monitor future distributions of the concentration for several pollutants in the city of Madrid. It focuses on modeling each and every available component which might play a role in air quality: past concentrations of pollutants, human activity, numerical pollution estimation, and numerical weather predictions. This tool is currently in operation in Madrid, producing daily air quality predictions for the next 48 hours and anticipating the probability of the activation of the measures included in the city's official air quality \no protocols through probabilistic inferences about compound events.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源