论文标题
耗散引起的拓扑状态中的疾病:不同类型的定位过渡的证据
Disorder in dissipation-induced topological states: Evidence for a different type of localization transition
论文作者
论文摘要
对非平衡量子相变的寻求通常会因驾驶和耗散趋势而产生有效温度而受到阻碍,从而导致经典行为。当设计耗散以将系统驱动到非平凡的量子相干稳态时,这会有所不同吗?在这项工作中,我们通过研究疾病对最近引入的耗散诱导的Chern拓扑状态的影响,并检查了Hermitian稳态稳态密度基质或Hamiltonian的特征,从而阐明了这一问题。我们发现,与平衡类似,每个Landau频段在其中心附近具有一个单个离域级别。但是,使用三种不同的有限尺寸缩放方法,我们表明,如果将疾病引入动力学的非差异部分,则临界指数$ν$描述定位长度的差异与平衡相差显着不同。这表明在冷原子实验中可访问的一种不同类型的非平衡量子关键普遍性类别。
The quest for nonequilibrium quantum phase transitions is often hampered by the tendency of driving and dissipation to give rise to an effective temperature, resulting in classical behavior. Could this be different when the dissipation is engineered to drive the system into a nontrivial quantum coherent steady state? In this work we shed light on this issue by studying the effect of disorder on recently-introduced dissipation-induced Chern topological states, and examining the eigenmodes of the Hermitian steady state density matrix or entanglement Hamiltonian. We find that, similarly to equilibrium, each Landau band has a single delocalized level near its center. However, using three different finite size scaling methods we show that the critical exponent $ν$ describing the divergence of the localization length upon approaching the delocalized state is significantly different from equilibrium if disorder is introduced into the non-dissipative part of the dynamics. This indicates a different type of nonequilibrium quantum critical universality class accessible in cold-atom experiments.