论文标题

将基于深度学习的插值方法应用于近海测深的测定法

Application of Deep Learning-based Interpolation Methods to Nearshore Bathymetry

论文作者

Qian, Yizhou, Forghani, Mojtaba, Lee, Jonghyun Harry, Farthing, Matthew, Hesser, Tyler, Kitanidis, Peter, Darve, Eric

论文摘要

近岸测深的沿海地区的海底的地形近岸测深,对于预测冲浪区流体动力学和路线规划以避免地下特征至关重要。因此,对于各种应用程序,包括运输运营,沿海管理和风险评估,它越来越重要。但是,由于预算限制和后勤限制,很少对近海测深的直接高分辨率调查进行。只有稀疏观测值可用时的另一个选择是使用高斯过程回归(GPR),也称为Kriging。但是,GPR难以识别具有尖锐梯度的模式,例如在沙杆和淹没物体周围发现的模式,尤其是在观察稀疏时。在这项工作中,我们介绍了几种基于深度学习的技术,以估算近海测深,并使用稀疏的多尺度测量值。我们提出了一个深神经网络(DNN),以计算近岸测深的后验估计以及有条件的生成对抗网络(CGAN),该网络(CGAN)从后验分布中取样。我们根据美国北卡罗来纳州鸭兵团(FRF)提供的近海调查产生的合成数据来训练我们的神经网络。我们将方法与Kriging进行了实际调查以及人工添加尖锐梯度的调查进行比较。结果表明,与本应用程序中的Kriging相比,DNN的直接估计给出了更好的预测。我们将引导与DNN一起进行不确定性定量。我们还提出了一种名为DNN-Kriging的方法,该方法将深度学习与Kriging结合在一起,并显示后验估计的进一步改善。

Nearshore bathymetry, the topography of the ocean floor in coastal zones, is vital for predicting the surf zone hydrodynamics and for route planning to avoid subsurface features. Hence, it is increasingly important for a wide variety of applications, including shipping operations, coastal management, and risk assessment. However, direct high resolution surveys of nearshore bathymetry are rarely performed due to budget constraints and logistical restrictions. Another option when only sparse observations are available is to use Gaussian Process regression (GPR), also called Kriging. But GPR has difficulties recognizing patterns with sharp gradients, like those found around sand bars and submerged objects, especially when observations are sparse. In this work, we present several deep learning-based techniques to estimate nearshore bathymetry with sparse, multi-scale measurements. We propose a Deep Neural Network (DNN) to compute posterior estimates of the nearshore bathymetry, as well as a conditional Generative Adversarial Network (cGAN) that samples from the posterior distribution. We train our neural networks based on synthetic data generated from nearshore surveys provided by the U.S.\ Army Corps of Engineer Field Research Facility (FRF) in Duck, North Carolina. We compare our methods with Kriging on real surveys as well as surveys with artificially added sharp gradients. Results show that direct estimation by DNN gives better predictions than Kriging in this application. We use bootstrapping with DNN for uncertainty quantification. We also propose a method, named DNN-Kriging, that combines deep learning with Kriging and shows further improvement of the posterior estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源